Eigenvalues and Eigenvectors

Subject: Advanced Linear Algebra

Subject Code: MMAT 303

Dr. Mahesh Kumar Sharma Assiatant Professor School of Basic and Applied Sciences

Eigenvalue

• Let A be a real or complex square matrix of order n as

$$A = [a_{ij}]_{n \times n}$$
 where $i, j = 1, 2, 3, \dots, n$

ullet The characteristic polynomial of A is defined as

$$\pi(\lambda) = \det(A - \lambda I_n),$$

where I_n is an identity matrix of order n.

• A number λ (may be real or complex) is said to be an **eigenvalue** of matrix A if and only if it is a root of its characteristic polynomial.

Example

• Example 1: Find the eigenvalues of the matrix

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

Solution: By definition, the characteristic polynomial is

$$\pi(\lambda) = \det(A - \lambda I_2) = \det\left(\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right)$$
$$= \det\begin{bmatrix} -\lambda & 1\\ 1 & -\lambda \end{bmatrix} = \lambda^2 - 1 \tag{1}$$

• The above polynomial has two roots viz. +1 and -1, which are the required eigenvalues.

Example

• Example 2: Find the eigenvalues of the matrix

$$A = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

Solution: By definition, the characteristic polynomial is

$$\pi(\lambda) = \det(A - \lambda I_2) = \det\left(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$
$$= \det\begin{bmatrix} -\lambda & 1 \\ -1 & -\lambda \end{bmatrix} = \lambda^2 + 1 \tag{2}$$

• The above polynomial has two roots viz. +i and -i, which are the required eigenvalues.

Example

• Example 3: Find the eigenvalues of the matrix

$$A = \left[\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right]$$

Solution: By definition, the characteristic polynomial is

$$\pi(\lambda) = \det(A - \lambda I_2) = \det\left(\begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$
$$= \det\begin{bmatrix} -\lambda & i \\ -i & -\lambda \end{bmatrix} = \lambda^2 - 1 \tag{3}$$

• The above polynomial has two roots viz. +1 and -1, which are the required eigenvalues.

Eigenvector

 \bullet A non-zero vector \mathbf{x} (having order $n\times 1)$ which satisfy the relation

$$A\mathbf{x} = \lambda \mathbf{x},\tag{4}$$

is said to be an **eigenvector** of A.

• The above relation (2) can be re-written as

$$(A - \lambda I)\mathbf{x} = \mathbf{0},\tag{5}$$

Eigenvector in case of Example 1

• To calculate the eigenvectors $\mathbf{X} = [x_1 \quad x_2]^T$ corresponding to eigenvalue $\lambda_1 = 1$, we need to solve

$$(A-I)\mathbf{X} = \mathbf{0},\tag{6}$$

This gives

$$\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Or

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{7}$$

Example Cont...

which further can be written as

$$-x_1 + x_2 = 0$$

$$x_1 - x_2 = 0$$
 (8)

- By solving (8), we obtain $x_1 = x_2$. If we select $x_1 = 1$, we get $x_2 = 1$. Thus the eigenvector corresponding to $\lambda_1 = 1$ is $\mathbf{X} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.
- To calculate the eigenvectors $\mathbf{X} = [x_1 \quad x_2]^T$ corresponding to eigenvalue $\lambda_1 = -1$, we need to solve

$$(A+I)\mathbf{X} = \mathbf{0},\tag{9}$$

Example Cont...

This gives

$$\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Or

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{10}$$

which further can be written as

$$x_1 + x_2 = 0 x_1 + x_2 = 0$$
 (11)

• By solving (11), we obtain $x_1 = -x_2$. If we select $x_1 = 1$, we get $x_2 = -1$. Thus the eigenvector corresponding to $\lambda_1 = -1$ is $\mathbf{X} = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$.